Development of an Algorithm for 16-Bit WTM

${ }^{1}$ Sravanthi.kantamaneni, Asst Professor, ${ }^{2}$ Dr.V.V.K.D.V.Prasad, Professor, ${ }^{3}$ Veera Vasantha Rao.Battula, Asst. Professor

Abstract

Binary Multipliers plays an important role in digital circuits. There are many methods for generating a Simple binary multiplication and some of them are like Ripple carry array multipliers, Row adder tree multipliers, Partial product LUT multipliers, Wallace trees, Booth recoding etc.,. Our project mainly concentrates on $8 x 8$ Wallace tree multiplier. It uses a famous Wallace tree structure which is an implementation of an adder tree designed for minimum propagation delay. Rather than completely adding the partial products in pairs like the ripple adder tree does, the Wallace tree sums up all the bits of the same weights in a merged tree. Usually full adders are used, so that 3 equally weighted bits are combined to produce two bits: one (the carry) with weight of $\mathbf{n + 1}$ and the other (the sum) with weight n. Each layer of the tree therefore reduces the number of vectors by a factor of 3:2. A conventional adder is used to combine these to obtain the final product. The benefits of the Wallace tree is that there are only $\boldsymbol{O}(\log \boldsymbol{n})$ reduction layers, and each layer has $\boldsymbol{O}(1)$ propagation delay. As making the partial products is $\boldsymbol{O}(1)$ and the final addition is $\boldsymbol{O}(\operatorname{logn})$, the multiplication is only $\boldsymbol{O}(\log \boldsymbol{n})$, not much slower than addition (however, much more expensive in the gate count). Naively adding partial products with regular adders would require $\boldsymbol{O}\left(\log ^{2} \boldsymbol{n}\right)$ time. Our project is to develop 8×8 Wallace tree multiplier using VHDL and will be simulated with the help of XILINX simulator and verified on Spartan-3E FPGA circuit board.

I. Introduction

Recent advancements in mobile computing and multimedia applications demand for high performance and low-power consuming VLSI (very large scale integrated circuit) Digital Signal Processing (DSP) systems. One of the most important components of DSP systems is a multiplier. Multiplication is basically shift and add operation. Usually in a DSP system, multiplier units consume large amount of power and cause most of the delay compared to other units like adders. Depending on size of the inputs (2 X 2 bit, $4 \mathrm{X} 4,8 \mathrm{X} 8$ etc.,) the number of steps a normal binary multiplier takes to compute the product increases drastically. Larger the steps of calculation larger will be the delay as well as the power consumption. Also area occupied by the multiplier on a FPGA (Field Programmable Gate Array) increases. Hence various algorithms have been developed in order to achieve lesser complexity in computation involving minimum calculation steps, which in turn can reduce delay, power and area constraints of multipliers.

The Wallace tree has three computation steps:

1. Generation of Partial products - multiplying each bit of one binary input with every bit of the other binary input. If each input has \mathbf{n}-bits the result of this step will give us \mathbf{n}^{2} number of binary bits called 'Partial products' distributed in \mathbf{n}-rows and $\mathbf{2 n}$-columns. This step is very same as what we do to multiply two numbers by hand.
2. Reduction of partial products - the partial products are to be added according to their place values (or 'weights') using half adders and full adders until only two rows of partial products are left.
3. Last stage addition - remaining two rows will be added using a conventional adder to get final result of multiplication.

Wallace tree multiplier reduction stages for 8X8 multiplication [1]

Reduction stage 1

S_{14}	$\begin{gathered} \mathrm{S}_{13} \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \mathrm{S}_{12} \\ \mathrm{~F} 1 \end{gathered}$	$\begin{aligned} & \mathrm{S}_{11} \\ & \mathrm{Fl} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{10} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline \mathrm{S} 9 \\ & \mathrm{Fl} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{8} \\ & \mathrm{Fl} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{7} \\ & \mathrm{~F} 1 \end{aligned}$	$\begin{aligned} & \mathrm{S}_{6} \\ & \mathrm{Fl} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{5} \\ & \mathrm{~F} 1 \end{aligned}$	$\begin{gathered} \mathrm{S}_{4} \\ \mathrm{~F} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{S}_{3} \\ & \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{S}_{2} \\ \mathrm{~F} \end{gathered}$	$\begin{aligned} & \mathrm{S}_{1} \\ & \mathrm{H} \end{aligned}$	S_{0}
$\begin{aligned} & \mathrm{C}_{13} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{C}_{12} \\ \mathrm{Fl} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C}_{11} \\ \mathrm{Fl} \\ \hline \end{gathered}$	$\mathrm{P}_{4} \mathrm{P}_{7}$	$\begin{aligned} & \mathrm{S}_{10} \\ & \mathrm{Hl} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{9} \\ & \mathrm{~F} 2 \end{aligned}$	$\begin{aligned} & \mathrm{S}_{8} \\ & \mathrm{~F} 2 \end{aligned}$	$\begin{aligned} & \mathrm{S}_{7} \\ & \mathrm{~F}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{6} \\ & \mathrm{~F}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{5} \\ & \mathrm{~F} 2 \end{aligned}$	C_{3}	C_{2}	C_{1}		
			$\begin{gathered} \mathrm{C}_{10} \\ \mathrm{Fl} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{C}_{9} \\ & \mathrm{Fl} \end{aligned}$	$\mathrm{P}_{4} \mathrm{P}_{5}$	$\mathrm{P}_{1} \mathrm{P}$	$\begin{aligned} & \mathrm{S}_{7} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\mathrm{P}_{0} \mathrm{P}_{6}$	$\begin{aligned} & \mathrm{C}_{4} \\ & \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{S}_{4} \\ & \mathrm{H} \end{aligned}$	$\mathrm{P}_{0} \mathrm{P}_{3}$			
			$\begin{aligned} & \mathrm{C}_{10} \\ & \mathrm{Hl} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} 9 \\ & \mathrm{~F} 2 \end{aligned}$	$\mathrm{P}_{3} \mathrm{P}_{6}$	$\begin{aligned} & \mathrm{C}_{7} \\ & \mathrm{Fl} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C}_{6} \\ & \mathrm{Fl} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C}_{5} \\ & \mathrm{Fl} \end{aligned}$	$\begin{gathered} \mathrm{C}_{4} \\ \mathrm{H} \end{gathered}$					
					$\mathrm{P}_{2} \mathrm{P}_{7}$	$\begin{aligned} & \mathrm{C}_{7} \\ & \mathrm{~F}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{6} \\ & \mathrm{~F} 2 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{5} \\ & \mathrm{~F}_{2} \end{aligned}$						
						C_{7} Hl								

Reduction stage 2

K	$\begin{gathered} \mathrm{K}_{14} \\ H \end{gathered}$	$\begin{gathered} \mathrm{K}_{13} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{K}_{12} \\ \mathrm{H} \end{gathered}$	K_{11}	$\begin{gathered} \mathrm{K}_{10} \\ \mathrm{~F} \end{gathered}$	K 9 F	K_{8} F	K_{7} F	$\begin{gathered} \mathrm{K}_{6} \\ \mathrm{~F} \end{gathered}$	$\begin{gathered} \hline \mathrm{K}_{5} \\ \mathrm{~F} \end{gathered}$	$\begin{aligned} & \mathrm{K}_{4} \end{aligned}$	$\begin{gathered} \mathrm{K}_{3} \\ H \end{gathered}$	K_{2}	K_{1}	K_{0}
O	$\begin{gathered} \mathrm{C}_{13} \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \mathrm{C}_{12} \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \mathrm{C}_{11} \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \mathrm{C}_{10} \\ \mathrm{~F} \end{gathered}$	$\mathrm{C} 9$	C8 F	C_{7} F	$\begin{gathered} \mathrm{C}_{6} \\ \mathrm{~F} \end{gathered}$	C_{5}	C4 H	C_{3}				

H															
					C_{9} Hl	C_{8} Fl	C_{7} H	C_{6} H							

2^{16}	2^{15}	2^{14}	2^{13}	2^{12}	2^{11}	2^{10}	2^{9}	2^{8}	2	${ }^{6}$	2^{5}					
0	$\begin{gathered} \mathrm{Z} 15 \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \mathrm{Z} 14 \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \text { Z13 } \\ \text { H } \end{gathered}$	$\begin{gathered} \mathrm{Z} 12 \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \mathrm{Z} 11 \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \mathrm{Z} 10 \\ \mathrm{~F} \end{gathered}$	$\begin{gathered} \mathrm{Z9} \\ \mathrm{~F} \end{gathered}$	$\begin{gathered} \mathrm{Z} 8 \\ \mathrm{~F} \end{gathered}$	Z7 F	Z6 H	Z5	H	Z3	Z2	Z1	Z
$\begin{gathered} \mathrm{C} 16 \\ \mathrm{H} \end{gathered}$	C14 H	$\begin{gathered} \mathrm{C} 13 \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \mathrm{C} 12 \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \hline \mathrm{C} 11 \\ \mathrm{H} \end{gathered}$	$\begin{gathered} \hline \text { C10 } \\ \mathrm{F} \end{gathered}$	$\begin{gathered} \hline \mathrm{C} 9 \\ \mathrm{~F} \end{gathered}$	$\begin{gathered} \hline \mathrm{C} 8 \\ \mathrm{~F} \end{gathered}$	C7 F	C6	C5	C4	0	0	0	0	0
\{																
$\begin{gathered} \text { No } \\ \text { need } \end{gathered}$																

Final Result Bits

Wallace tree reduction stages for 8 bit multiplication.

Improvements to the Algorithm:

First stage:

It is evident that every multiplication in Wallace tree algorithm is done in three logical stages. They are the partial product generation, the reduction stages and the last stage addition using a conventional adder. If we recall the description for Partial product generation, the first step, we are doing it by use of AND gates. If two 8 bit numbers say A and B are to be multiplied, the algorithm starts at the least significant bits (LSBs) of A and B. LSB of B say b_{0} will be AND with all the eight bits of A from a_{0} to a_{7}. This gives us a single row of partial
products. The second row of PPs will be generated when all bits of A will be AND with b_{1}. Similarly, every row will be formed due to AND operations.

Stepl: Generation of the Partial Products							a7 b_{7}	$\begin{gathered} \mathrm{a}_{6} \\ \mathrm{~b}_{6} \end{gathered}$	$\begin{aligned} & \mathrm{a}_{5} \\ & \mathrm{~b}_{5} \end{aligned}$	$\begin{gathered} a_{4} \\ b_{4} \end{gathered}$	a_{3} b_{3}	$\begin{gathered} \mathrm{a}_{2} \\ \mathrm{~b}_{2} \end{gathered}$	$\begin{gathered} \mathrm{a}_{1} \\ \mathrm{~b}_{1} \end{gathered}$	$\begin{gathered} \mathrm{a}_{0} \\ \mathrm{~b}_{0} \end{gathered}$
							$\mathrm{a}_{7} \mathrm{~b}_{0}$	$\mathrm{a}_{6} \mathrm{~b}_{0}$	$\mathrm{as}_{5} \mathrm{~b}_{0}$	$\mathrm{a}_{4} \mathrm{~b}_{0}$	$\mathrm{a}_{3} \mathrm{~b}_{0}$	$\mathrm{a}_{2} \mathrm{~b}_{0}$	$\mathrm{a}_{1} \mathrm{~b}_{0}$	$\mathrm{a}_{0} \mathrm{~b}_{0}$
						$\mathrm{a}_{7} \mathrm{~b}_{1}$	$\mathrm{a}_{6} \mathrm{~b}_{1}$	$\mathrm{a}_{5} \mathrm{~b}_{1}$	$\mathrm{a}_{4} \mathrm{~b}_{1}$	$a_{3} b_{1}$	$\mathrm{a}_{2} \mathrm{~b}_{1}$	$\mathrm{a}_{1} \mathrm{~b}_{1}$	$\mathrm{a}_{0} \mathrm{~b}_{1}$	
					$\mathrm{a}_{7} \mathrm{~b}_{2}$	$\mathrm{a}_{6} \mathrm{~b}_{2}$	$\mathrm{a}_{5} \mathrm{~b}_{2}$	$\mathrm{a}_{4} \mathrm{~b}_{2}$	$\mathrm{a}_{3} \mathrm{~b}_{2}$	$\mathrm{a}_{2} \mathrm{~b}_{2}$	$\mathrm{a}_{1} \mathrm{~b}_{2}$	$\mathrm{a}_{0} \mathrm{~b}_{2}$		
				$a_{7} b_{3}$	$a_{6} b_{3}$	$a_{5} b_{3}$	$a_{4} b_{3}$	$a_{3} b_{3}$	$a_{2} b_{3}$	$a_{1} b_{3}$	$a_{0} b_{3}$			
			$\mathrm{a}_{7} \mathrm{~b}_{4}$	$a_{6} b_{4}$	$a_{5} b_{4}$	$a_{4} b_{4}$	$a_{3} b_{4}$	$a_{2} b_{4}$	$a_{1} b_{4}$	$a_{0} b_{4}$				
		$a_{7} b_{5}$	$a_{6} b_{5}$	$a_{5} b_{5}$	$a_{4} b_{5}$	$a_{3} b_{5}$	$a_{2} b_{5}$	$a_{1} b_{5}$	$a_{0} b_{5}$					
	$a \cdot b_{6}$	$a_{6} b_{6}$	$a_{5} b_{6}$	$a_{4} b_{6}$	$a_{3} b_{6}$	$a_{2} b_{6}$	$a_{1} b_{6}$	$a_{0} b_{6}$						
$a_{7} b_{7}$	$a_{6} b_{7}$	$a_{5} b_{7}$	$a_{4} b_{7}$	$a_{3} b_{7}$	$a_{2} b_{7}$	$a_{1} b_{7}$	$a_{0} b_{7}$							

Rows of partial products of 8 bit multiplication

Every partial product of first row has b_{0}. Every second row element has b_{1}. Similarly every partial product of $n^{\text {th }}$ row will have the common AND input b_{n-1}. So, we can write mathematically the first row as $\left(a_{7} a_{6}\right.$ $\left.a_{5} a_{4} a_{3} a_{2} a_{1}\right) * b_{0}$. Any $n^{\text {th }}$ row can be written as ($\left.a_{7} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1}\right) * b_{n-1}$.

We know that all the above bits are binary digits i.e. either 0 or 1 . Hence two possibilities exist.

If $\mathbf{b}_{\boldsymbol{0}}=\mathbf{0}$:

Then the first row ($\left.a_{7} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1}\right) * b_{0}$ will be equal to
$\left(a_{7} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1}\right) * 0=\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right)$

If $\mathbf{b}_{\mathbf{0}}=\mathbf{1}$:

Then the first row $\left(a_{7} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1}\right) * b_{0}$ will be equal to
$\left(a_{7} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1}\right) * 1=\left(a_{7} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1}\right)=A$
Hence any row will be equal to the Multiplicand A or it will be a row full of Zeros.
Keeping the above fact in mind we can use another way to generate partial products for our need without using n^{2} number of AND gates (n is the size of inputs). This method is given below. Any $\mathrm{n}^{\text {th }}$ row will be 0 or A based on the value of common input b_{n-1} of that row.
Row ' n ' $=0$, if $b_{n-1}=0$
Row ' n ' $=A$, if $b_{n-1}=1$
Consider the following example to comprehend this new logic in a better way.
Let $A=11111111$ and $B=10011011$. A is multiplicand and B is multiplier as usual.
The rows of partial products for the multiplication A X B are:
Row $1=b_{0} \operatorname{AND}(11111111)=1$ AND $(11111111)=11111111=\mathrm{A}$
Row $2=b_{1} \operatorname{AND}(11111111)=0$ AND $(11111111)=11111111=A$
Row $3=b_{2}$ AND $(11111111)=0$ AND $(11111111)=00000000=0$
Row $4=b_{3} \operatorname{AND}(1111111)=1$ AND $(11111111)=11111111=\mathrm{A}$
Row $5=b_{4}$ AND $(11111111)=1$ AND $(11111111)=11111111=\mathrm{A}$
Row $6=b_{5}$ AND (11111111) $=0$ AND $(11111111)=00000000=0$
Row $7=b_{6}$ AND $(11111111)=0$ AND $(11111111)=00000000=0$
Row $8=\mathrm{b}_{7} \operatorname{AND}(11111111)=1 \operatorname{AND}(11111111)=11111111=\mathrm{A}$
(Or)
Simply we can write:
Row $1=A$ since $b 0=1$
Row $2=\mathrm{O}$ since $\mathrm{b} 1=0$
Row $3=0$ since $\mathrm{b} 2=0$
Row $4=A$ since $b 3=1$
Row $5=\mathrm{A}$ since $\mathrm{b} 4=1$

Row $6=0$ since $\mathrm{b} 5=0$
Row $7=0$ since $\mathrm{b} 6=0$
Row $8=$ A since $\mathrm{b} 7=1$

Advantage:

In case of previous method for a n-bit multiplier, the first stage will require a total of n^{2} number of AND gates. But with the new method the task of partial product generation will be done by just n number of steps instead of n^{2} steps. It is important to note that while describing the multiplier in VHDL code, each of the n^{2} AND operations have to be written manually. For a 32 bit- multiplier it requires 1024 steps to be written for simple AND operations. Instead, with the new modification, only 32 steps are to be written which will save a lot of energy and time to the design engineer during development of the code. So, we have adopted the latter method in designing the WTM system.

Representation of signals:

As described in an algorithm, we have to use different variables to indicate the partial products in different levels of reduction stages. For example, we used a, b in first stage, then P0, P1 in the next and later S, $\mathrm{C}, \mathrm{M}, \mathrm{N}$ etc. in the figures of chapter 2 . These variables are of our choice and we must make sure that PPs in different levels of reduction do not have the same representation. It means that designer has to make a note of which variables he is using in what stage of reduction, clearly and without confusion.

There is another sound drawback of representing variables (or 'signals' with respect to VHDL coding) using normal alphabets like $\mathrm{A}, \mathrm{B}, \mathrm{M}$ or N etc. Let us assume that we have come across a signal N 2 while verifying the design. We cannot readily identify which reduction stage this signal N 2 belongs to. We must go through the code once again form start and locate where N 2 has its origin. Imagine a 32 bit multiplier which will have a very large number of such signals. To go through the code every other time to know about a signal, it is a tremendous burden for the designer. So, it is of high importance that we have a proper representation scheme for signals or variables. We must be able to identify from the name of a signal or variable several aspects. They are:

1. The reduction stage to which it belongs
2. The column or the weight of the partial product
3. Whether it is a SUM bit or CARRY bit
4. If more than one sum and carry bits are present in the column, then position of that bit in the column.

Family	Spartan 3E
Category	General purpose
Device Type	XC3S250E Quad 208: pin Plastic (PQFP) Plat Pack
Package Type	-5: High Performance
Speed Grade	

Scheme of representation of signals

To satisfy the above four requirements, we adopt the above representation scheme.

,reduction stage number 'i' ; Eg: R1, R2, R4 etc. sum bit of column ' $\mathrm{j}+1$ ' carry bit of column ' $\mathfrak{j}+1$ ' Weight of partial product $=2^{j}$ place of the signal in the column.
If there are 4 sum bits in the column k takes the values of $1,2,3$ and 4 .
Always the sum bits are taken first and the carry bits are taken next to sums. Reverse will also give the same answer, but to avoid confusion sums are given first priority in any column. Let us consider a column having 4 sums and 3 carries. Let all the bits belong to column number $6(j=5)$ of $3^{\text {rd }}$ reduction stage. It will be represented as follows.
R3S5_1
R3S5_2
R3S5_3
R3S5_4
R3C5_1
R3C5_2
R3C5_3
A column of signals of $3^{\text {rd }}$ reduction stage, $5^{\text {th }}$ column

Designing, Synthesis and Results of WTM for the Spartan 3E family FPGA chip

Simulated output of WTM

Maximum Combinational Path Delay

S. No	Size of multiplier	Maximum combinational path delay (Nano seconds)
1	4	10.426
2	6	11.921
3	8	13.924
4.	10	14.775
5.	12	14.798
6.	14	16.168
7.	16	16.476

Comparison of Multipliers w.r.t Delay (ns)

Comparison of Multipliers in terms of Area

Comparison of Multipliers in terms of PDP

Comparison of Multipliers in terms of ADP

Size of the multiplier Vs No. of reduction stages

S. No	Size of multiplier	No. of Reduction Stages	Including last stage
1	4	3	4
2	8	4	5
3	16	6	7

Features of WTM

Parameter	Used	Available	Pre Layout Values (or) Ratio
Number Of Slices $\mathbf{9 6}$	371	2448	15%
Number of 4-input LUTs	647	4896	13%
178	64	158	40%
Number Of Bonded Input 32	64	158	40%
Number Of Bonded Output 32		16.476	
Delay(ns)		100	
Slice Utilization Ratio		100	
BRAM Utilization Ratio			

Conclusion and Discussion

It can be concluded that Wallace tree multiplier is superior in all respects like Delay, Area and speed. However array multiplier requires more power consumption and gives optimum number of components required, but it can provides a better delay. If we utilize this multiplier as a module of real time applications like FIR Filter ,it can pump up the Filtering action. Further the work can be extended for optimization of said multiplier to improve speed or to minimize the Power Consumption.

References

[1]. C. S. Wallace, A Suggestion for a Fast Multiplier, IEEE Transactions on Electronic Computers, February 1964, EC-13:14-17.
[2]. Vijaya Prakash A. M, Dr. MGR, K. S. Gurumurthy, A Novel VLSI Architecture for Low power FIR Filter, International Journal of Advanced Engineering \& Application, January 2011, PP 218-224
[3]. Gary W. Bewick, Fast multiplication algorithms and implementation, The Department Of Electrical Engineering and The Committee on Graduate studies of STANFORD UNIVERSITY, February 1994. PP 8-16.
[4]. J. Bhasker, AVHDL Primer, Third Edition, Pearson Education, 2007, PP-21 to 50, 88 to 101
[5]. John F. Wakerly, Digital Design Principle and Practices, fourth edition, Prentice Hall Pearson Education, 2009, PP 235-250, PP 786-795
[6]. http://en.wikipedia.org/wiki/Wallace_tree, http://en.wikipedia.org/wiki/FPGA.
[7]. Multiplication in FPGA's "The performance FPGA DESIGN specialist"

